2 resultados para Caspase

em Digital Commons - Michigan Tech


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disuse osteoporosis is a condition in which reduced mechanical loading (e.g. bed-rest, immobilization, or paralysis) results in unbalanced bone turnover. The American black bear is a unique, naturally occurring model for the prevention of disuse osteoporosis. Bears remain mostly inactive for up to half a year of hibernation annually, yet they do not lose bone mechanical strength or structural properties throughout hibernation. The long-term goal of this study is to determine the biological mechanism through which bears maintain bone during hibernation. This mechanism could pinpoint new signaling pathway targets for the development of drugs for osteoporosis prevention. In this study, bone specific alkaline phosphatase (BSALP), a marker of osteoblast activity, and tartrate resistant acid phosphatase (TRACP), a marker of osteoclast number, were quantified in the serum of hibernating and active black bears. BSALP and TRACP decreased during hibernation, suggesting a balanced reduction in bone turnover. This decrease in BSALP and TRACP were correlated positively to serum adiponectin and inversely to serum neuropeptide Y, suggesting a possible role of these hormones in suppressing bone turnover during hibernation. Osteocalcin (OCN) and undercarboxylated OCN increased dramatically in the serum of hibernating bears. These increases were inversely correlated with adiponectin, glucose, and serotonin, suggesting that OCN may have a unique role in energy homeostasis during hibernation. Finally, MC3T3-E1 osteoblasts were cultured in the serum from active and hibernating bears, and seasonal cell responses were quantified. Cells cultured in serum from hibernating bears had a reduced caspase-3/7 response, and more living cells, after apoptotic threat. The caspase-3/7 response was positively correlated to serum adiponectin and to gene expression of OCN and Runx2, suggesting that reduced caspase-3/7 activity may be related to the reduced differentiation potential of osteoblasts in hibernation serum, and that adiponectin is a potential effector hormone. In summary, the activities of osteoblasts and osteoclasts are reduced during hibernation in bears. This reduced turnover is due, in part, to hormonal control. Further study of potential effectors adiponectin and neuropeptide Y may provide insight into the biological mechanism through which bears maintain bone throughout hibernation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression at transcriptional or post-transcriptional level. Let-7 family is among the first identified human miRNAs and regulates multiple cellular processes including glucose metabolism in multiple organs. It has been reported that overexpression of let-7 resulted in insulin resistance and impaired glucose tolerance through repressing insulin signaling pathway in both muscle and liver. However, the role and mechanism underlying let-7 function in pancreatic beta-cells have yet to be elucidated. Let-7 family contains nine members, which poses a significant challenge in complete deletion of this miRNA family. To study the function of let-7 and to overcome the functional redundancies of various let-7 members in pancreatic beta-cells, the highly expressed let-7a and let-7b were blocked simultaneously using short tandem target mimic (STTM) approach developed in our laboratory. Introducing STTM-let7 into beta-cells markedly increased the expression of Caspase 3, a direct target of let-7, confirming a sufficient functional knockdown of let-7a/b by STTM-let7. STTM-let7 enhanced apoptotic cell death induced by cytokine, indicating that let-7a/b is able to protect from apoptosis through attenuating Caspase 3 expression in pancreatic beta-cells. In contrast to the previous observation that let-7 silencing increases insulin signaling in muscle and liver, inhibition of let-7 with STTM-let7 significantly repressed glucose-stimulated insulin signaling in pancreatic beta-cells, leading to impaired insulin secretion and reduced beta-cell proliferation. Taken together, an appropriate level of let-7 is essential in maintaining beta-cell function and viability. Dysregulation of let-7 may contribute to the pathogenesis of type 2 diabetes.